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APPLICATTION OF HIGH-SPEED COMPUTERS TO THE SOLUTION OF 7 ‘639*
THE RESTRICTED THREE-BODY PROBLEM BY THE HILL-BROWN METHOD;
PART I: CALCULATION OF THE RIGHT-HAND SIDES OF
THE EQUATIONS IN INHOMOGENEOUS FORM

V. A. Shor

ABSTRACT 5‘ 3 75 2
The use of high-speed electronic computers is investigated for
solving the restricted three-body problem by the Hill-Brown
method. The logic diagram is given for a routine to compute
terms on the right-hand sides of the inhomogeneous equations
generated by the derivatives of the perturbation function.

The same program is used to cbmpute the terms produced by
series expansion of ug-l/r3, z AL /r3. Wm

During therlést.ten years, the Instituﬁe of Theoretical Aétfdnomy, Academy
f‘of Sciences of the USSR has undertaken several attemps to utilize the lunar
method of Hill and Brown for the formulation of analytical theories of certain
irregular satellites of Jupiter (Proskurin, ref. 6 and 7, Tokmalayeva, ref. 9).
Theoretical justification was found for applying the lunar method at least to
some of the satellites of Juplter. The obstacles standing in the way of wide-
spread application of this method to satellite systems are not so much theoreti-
"i;cal as of a purely practical nature; for machine calculations, the formulation
;;:of & theory comparsblc in accuracy with ohservations requires several years of

i

.- concentrated effort, even for satellites with fairly modest orbit parameters.

5;1 ¥Numbers in the mergin indicate pagination in the original foreign text.




- These difficulties are compounded by the fact that the parsmeter m, which enters
- into the theory in numerical form, is not known with sufficient accuracy for &
. number of satellites, hence a theory, even it it were formulated, could not be
"regarded ag complete; more precise knowledge of the orbit parameters requires
recomputation of at least some of the inequalities. However, even at this
;zmoment we are sorely in need of a theory, because the purely literal theory of
: Delauney is either superficially applicable for some of the distant satel-
‘_ lites of Jupiter (satellites Vi, VII, X) or generally inapplicable (satellite
‘f‘VIII).
: We should also add that the application of the Delauney  theory Jjust to
account for the perturbations requires rather numerous and tedious computations,
. to the extent that it would be encouraging if even some of the necessary labor
. could be mechanized.

The sbove has justified investigating the possibility of using electronic
computers to automete the computational process in the Hill-Brown method. The
possibility and desirability of mechenizing the separate states of the compu- 640
tations in this method were conceptually demonstrated by Brown himself some years
ago (1938, ref. 15). More recently, & nunmber of papers have been published in

x which the problem of implementing classical computational methods on electronic
equipment has been coped with successfully (refs. 8 and 16).

Of course, in implementing methods that were created in application to the
fcomputational devices of the last century, we cannot utilize to the fullest ex-
fﬁ‘tent the capabilities of electronic computers; we require the creation of new
‘ fjmethods basically oriented toward mwudern techmigues. However, by using the old
*ftmethod with a well developed solution algorithm, we achieve our goal more quick-

?Egly, and the first results that have in fact been obtained in the indicated
IS DR
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'lpééérs demonstrate the wisdom of thisrapﬁroaéh to solution of a number of prob-"

lems in celestial mechanics.
A number of features of the Hill-Brown method are clearly amenable to the
workable solution of the stated problem.

About two thirds of all the work involved in this method calls for the

©' multiplication of series, & process which yields very simply to mechanization.

The entire sequence of operations that must be executed in order to determine

- the coefficients of the inequalities with a certain characteristic forms a
- computational cycle, which is iterated as many times as there are charascteris-

"~ tics to be teken into account. Since there can be as many as a hundred or more,

" we see at once the utility of the method; the cyclical nature of the operation

leaves no doubt. Moreover, the analysis of one cycle shows that it bresks down

into a number of stages, within which the computations are of an exceedingly

jf uniform, repetitive, and essentially elementary nature. These stages include

selection of the necessary terms from the expansion of the perturbation func-
tion, the multiplication of inequalities, the solution of equations by the
method of successive approximstions.

On the other hand, it is important to realize that the lunar method of

' 'Hill and Brown is recognized as a method for solving the restricted three-body

i

problem, and only this fundamental problem can be fitted to a unified scheme of

" .solution. To account for other effects in satellite motion requires a particu-

i
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}lar approach and a special computiational program.

We note one other feature of the Brown method which is very useful in man-

[
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,ual calculation but which clearly cannot be used in cowmputver calculstions. Tn

écalculating the coefficients of the inequalities menually, we are often able to

jmake use of the products of series which appear as intermediste results in de-

e A

termining lower-order inequalities.
po
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" The peculiar nature of computations on electronic equipment is such that

it is simpler and faster to reproduce these products by repeated computation
than to store them and later extract théem from memory. In this case, however,
(;the computations lead to a progressive increase in the time spent in determin-

< ing the coefficients as the orders of the inequalities is increased.

ci Brown (ref. 15) developed the notibn that utilizing the equations of motion

- in a rectilinear coordinate system rotating with an asngular velocity equal to
the mean motion of the moon should greatly facilitate the procedure of determin-
ing the unknown coefficients of the inequalities.

However, the writing of an algorithm to solve these equations represents
in itself a rather laborious task. If it proves worthwhile in practice to im-
‘plement the lunar method on computers, then at that time the problem of chang-
ing the coordinate system can be taken up.

In formulating the theory of lunar motion, Brown employed the equations of
motion in the so-called homogeneous and inhomogeneous forms.

The solution of the equations in inhomogeneous form involves less effort
(this applies to the determination of the coefficients of the several low order

inequalities), but with small divisors present the accuracy of the coefficients

- turns out to be insufficient in a number of instances. In these cases, the pre-

cision of the coefficlents is increased by means of the equations in homogeneous

<1 form. The coefficients of the fifth- and sixth-order inequalities have been [6L1

¢ computed on the basis of the equations in homogeneous form exclusively, In com-

4% puter calculations, the use of both forms of equations is undesireble, since in

. this case it becomes necessary to have two different programs. Conscguently,

‘at the expense of a certain increase in the number of computations, it is neces-

iiiisary to restrict to the homogeneous equations.
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hths'bur work prdgrééééa; hbﬁevef;”iﬁwwas decided first of all to explore the

- possibility of completely automating the computational process using the equa-

 ftions in inhomogeneous form. This was all the more justified in that the compu-

" tation of the right-hand members of the equations in homogeneous form can be
- carried out to a considerable extent in the same general scheme as for the in-

" homogeneous form of the equations. The equations are solved in either case by

the method of successive approximations, which makes it possible to carry over

& number of the techniques used in solving the equations in inhomogeneous form

i to solution of the equations in homogeneous form. Furthermore, subsequent ex-

perience in the operation of the program will uncover its weak points and permit

' the exclusion of errors in solving the more difficult problem of automating the

solution of the equations in homogeneous form.
In the present article, we present the results pertaining to computation of

the right-hand sides of the equations in inhomogeneous form. TIn o doing, we

- will steer away from an exhaustive description of the program, treating instead

e

only the principal stages of the computational process and the techniques used
to solve some of the problems thet arise in programming. The proposed compu-
tational scheme, of course, is not the only possible one; of several investi-
gated modifications, we have chosen the omne which,.in our opinion, was better
suited then the others to the capsabilities of the Strela computer; the latter
‘has an internal memory space of 2047 cells plus & magnetic tape memory device;
%it has & computation rate up to 2000 operations per sacond.

Aiming first of all at the formulation of theories to account for some of

\the irregular satellites of Jupiter (VI, VizT, X), in the expansions of the

" derivatives of the perturbation function terms we have retained terms of order

y ae'2, e'3,51222, since for these satellites, as shown by

e

o >




Tokmalayeva's estimates (ref. 9), we can neglect inequalities having factors of
lesser magnitude, provided only the error does not have to be better than 0.1
in geocentric longitude. However, the principle by which the program is formu-
- lated does not at all depend on the nunber of terms retained in the expansions.
In the interest of saving the reader constant referral to primary sources,
t we will briefly review the basic postulates of the Hill-Brown theory in the
-first two sections.

The work was carried out under the direction of Prof. N. S. Yakhontovaya,
to whom the author expresses his deep appreciation.
1. EQUATIONS OF MOTION AND FORM OF SOLUTION

Let %, y, z be the rectilinear coordinates of a satellite relative to a
moving system of axes with origin at the point J (Jupiter) and base plane coin-
ciding with the plane of the sun's orbit. The x-axis is directed toward the
center of the sun, forming a right-handed reference frame with the y- and z-axes.
As assumed, the motion of the sun about the center of inertia of Jupiter and the
satellite is executed in a fixed plane in an elliptical orbit.

We let
u=x+V—1uy, C_——-exp_(n—n’)(t—-z‘o) V—1, *=(n—f-[n—,)?,

d n'

e T n—n"?

1.4
(n—n)V—1 dt

s::x-—-V:riy,l)Z: ={

where n, n are the mean motions of the satellite and the sun, I is the mass of
Jupiter. The ﬁass of the satellite is assumed equal to zero.

Then the equations of miction of the satellite will have the form (ref. l3,[§5§
1899, p. 53)

oo L1 .3 *u 0
(D—i—m)zu%——?* uu+7mzs_(us+22)3/’:_ﬁ_?r’ a
1 3 *S 02
_ 2 = 2 ~ 2y - — l
(D m) S+2m8+2mu (us—+—z2)s/’ du? ( )
2 g, *Z I
(D m=; . \u$+zz)’/z— 2 0z °
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 Here () is the perturbation function of the restricted three-body problem:

. . N 1 . —
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The values of 52, 53,... are obtained from &, Bgyees by substitution of
-1
L™ ror g.
The solutions x, y, z of these equations can be formally represented as
< trigonometric series in multiples of the four arguments
e ,
L (n—n)(t—14¢,), cn—n')(t—1),
i min—n)(t—t), gln—n)(t—ts),
1‘.;’ ;
o : ot TRTR L SR e— 7.
, ifOI‘ which tO_"__n_:nT’ = c(n—n')? ?—— n ! ta—_;(n—-n') are the dif

}/;gference in mean longitudes of the satellite and sun, mean anomaely of the
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' satellite, mean anomaly of the sun, and mean latitude argument of +the satellite;
:;respectively (in these formulas, eo,ﬂb,klo are the mean longitude,perijove longi-
5 fude, and nodal longitude of the satellite in the initial epoch, 56, Wd are the
;ilongitude of the sun and the longitude of its pericenter in the same epoch, the[é&i
;iquantities c and g remsin to be determined).
fég The coefficients of the trigonometfic series, in turn, are expanded in
B series ascending powers of e, e; k, and a =a/a’, where e, Kk, a are para-
- meters denoting the eccentricity, inclination, and semimajor axis of the satel-
” lite orbit, e’ and a’ are the eccentricity and semimajor axis of the sun's orbit.
Going over to complex variables, it may be stated that the solution u{_l,
s, Z*J:i_, correct to constant factors that are nonessential to the determina-

tion of the unknown coefficients ki 72 Ai ;2 cen be represented as the sum of
b =

inequalities, each of which has the form

a\ Z [, €347 0, L ET], = efielkate, ‘ (ll-)

In this expression, A is the characteristic of the inequality whose order

is equal to il + i2 + 13 + ih' We can speak of the order of the inequality in

the same sense. The set of all inequalities with the characteristicAin the
expansion of any coordinate will be called the complex of inequalities with
“ khet . . ' C_l :
. tha characteristic and will be denoted by BN SA;,'ZAV-Jﬁ respectively.

The values that * 7 can assume for the separate inequalities of a given complex

, can be determined from the cguation (ref. 1L).
; e ), YL . Y A . e )
L =, =2 e+ (= o g =012 ... 0. (5)

;i iindex i, is even, in the characteristics of the inequalities of the coordinate

) ‘ ,
irv..__.._»_..,% - [pr— “ 8
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z the index i, id odd.

3

An expression of the type Ai

i+ T
T§21+‘ is called a term of the expansion with
2

o argument 2i 4+ 7 (occasionally, for brevity, the term "argument" will be applied
‘b0 the quentity 7). |
The set of terms for which the quantity 7 remains invariant forms a group.
fi%The index i for the separate terms of the group assumes those of the wvalues O,
+1/2, +1, +3/2,... for which the numbers 2i and i) are identically even or odd.
For the coefficients of the inequalities of the coordinate z, we have the

reletion

(6)

2. METHOD OF DETERMINING THE UNKNOWN COEFFICIENTS
For determining the unknown coefficients of the inequalities, the method
“ of undetermined coefficients is used, where as a first approximation the coef-
ficients of the zero-order inequalities are determined, followed by the coef-
ficients of the first-order inequalities, second-order, and so forth.
Let the coefficients of the inequalities up to and including order n - 1 be
already determined and let it be required to find the coefficients of the nth-
- order inequalities with characteristic A. It follows from the foregoing section

 that each coordinate can be represented as the sum of complexes of inequalities:
ul—t=ul +E;:1];—1, si=s+ Espl, zV—1= 2 z, \/rl’
‘where the characteristic u tekes on all possible values for a given coordinate

;1fexcept M= 0. Substitubing these expressions into the equations of motion, we

Q&;equate terms containing the factor A on the right- and left-hand sides of the

‘equations. This leads to the following relations (ref. 13, 1899): [ 4k

ﬁ‘C—lU)—FlnyuxﬂPﬂﬁch-FJVﬁcEis equal to the sum of terms with characteristic A

G : 9
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4n the expre581on
' (D* +-2mD) Ny, —Z [P "PC—1>2+18§ oI spc)z-.-
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;

CBT(Saggs s s R e S (g
+Z—S(E z*‘\/_ ) }_;uuc—l_" a :_ZL y -::g ﬁ¢-7+

EzAfL- - EMZA NET is equal to the sum of terms with characteristic A in the

expression

. 3 Mz, VIl R
—D222u\/—1_l@‘/ 1— :'msi——[qu“C‘l—i—f\ sPC]

o VT r1s . u ) -
ZE AR (St et NagledsE T

R / @ anamd 52 sent
where
N \
] 2,—3
M= E M - /‘Tl2 -5 —i« N= 5 N2 ._.—_'~3~ m -2 3 'X-uuC'
2 5 T2 w_'
' ¢ L3 - -
. r u gl %
P=Yr #=a™ = Ngm=gr X
+ U ‘.“" ?0
— Go—3 r—i *
A ~ <
— r2 g -~ .
Q—‘)Qa%' ST, Te= T = - —
Yo - )
2p 2
- ) “
_ 2% a2 0’_ —] v
R= St =al— e R S

The quantities P, R,... are obtained from P, R,... by substitution of {-l

[ for g .

On the left-hand sides of equations (7) and (8) are enumerated all the

L;;terms containing the unknowns u _, s , and zA. It is sufficient to assume that

A X

s

,”;_on the right-hand sidcs of these equations w acquires characteristics of order

igno higher than n - 1, since higher-order inequalities could not produce terms

4 E‘bherein with the factor A.

. . 10



‘condition yields a system comprising an infinite number of linear equations with

an infinite number of unknowns:

, N Y on A
(2 +7+ 14+ m)h; .+ Y Miticy e+ 2Ny .= A
J J
¥
. . o Sy i 10
(2 +c—1—m)o_, _ -~ Z My =~ _‘f__ No o =A_ — ‘ ( )
J 2 :

where j =0, #1, ¥2,..., 21 = 0, *1, *2,..., 21 - :‘LLL are always even.

Mj, Nj decay rapidly with increasing |i| and

>

‘s A
The quantities Ai,,r, i,-7

~|J], end this meens that we cen limit to a finite number of equations, which

" are solved simply by the method of successive approximations.

After rejecting the required terms, equation (8) assumes the form

Lﬁzkv::i——i;7;AV::i:;;a$::T}7:&,T&“+‘——C‘”f3. (98)

To determine the coefficients Ai,T,of the inequalities of the coordinate
b

"z, each of which has the form

z;,  V—i-2\ E N (CF - P,

+

© we obtain the system

(2 )N, —2 UM = A (11)

| where J =0, 1, #2,..., 21 = 0, 1, ¥2,..., 21 - i, are even, which is also

2N

oo

7 In the case of inequalities withi c

" ‘solved by the method of successive approximations.

=y
)
H
[\
(@]

. erist—icse and_k (T: c and T = g\,

'~ the systems (10) and (11) are homogeneous and can have nontrivial solutions

S

V'fonly in the case when their determinents go to zero. This fact can be utilized

fto determine the unknowns c, and &g At the present time, the values of c. and

0]

égo which meke the determinant go to zero can be obtained by means of the series

0
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" The presence of the expressions

—N(D 2D S,  —D*Yz,V—1

“ on the right-hand sides of equations (7) and (8) is sttributable to the fact
 that the quantities ¢ and g are series in even powers of the fundamental para-

YU meters:

2 4=

e%e’ e,

— 2 '2 .2 - Lo 2 /2
C=cy+ec,t+ec+uc,+ K C.-i-e'c, +ee’c

— 2 2 2 2 4 2 2
g_gf+e&r+egw+mgw+kg”+egd+eegww+.“

In differentiating inequalities of lower order than n, terms of order n

with the characteristic A can therefore occur.

After the necessary terms have been eliminated from the right-hend side,

equation (7) assumes the form
D+ m)Pu, 4+ Myt + Ns,L=ak D[4, 2+ A, ) (9)

On the right-hand side of (9) we separate out two groups of terms with /645

arguments of the form 2i +7 and 21 -7

ak 2 [A, T(’zi-i—,t -+ A:‘, _Tcm‘_t].

The inequality u, Tl_l corresponding to this pair of values of #7 is sought
2

in the same form as that in which we represented the right-hand side:

e subotitute this expression for u.,TC—l and the conjugate quantity s, Tf
Ny
> into the equation that derives from (9) by rejecting all groups of terms except

T must satisfy this equalliowu,

', the two chosen groups. Inasmuch as)\:.L
Lo P

and A .
i

;:i:they are determined from the condition that the coefficients on the right- and

n ileft-hand sides of the equation for identical powers of { be equal. This

e : 11
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computed by Hill end Adams, which fé'ﬁfééé’ﬁ{i”é’b' é’ﬁd"gd'éé’é' function of the
parameter m (refs. 10 and 19). After the values of o and = have been found,
- one of the unknown coefficients can be chosen arbitrarily, the rest being de-

/termined in the usual manner.

The coefficients of the zero-order inequalities

. - 2'
ull=a 2 al, Sh=a Z al®

C wlll be regarded as known, since they héve been obfained by Hill as power series

.\ in the paremeter m (refs. 17 and 20).

3. FORMULATION OF THE PROGRAM AND MEMORY ALLOCATION /616
The process of computing the unknown coefficients of & complex of inequal-
b‘ities with a given characteristic can be broken down into a number of stages,
:including the following:
1) computation of the terms of the right-hand members of equations (7) or
 1‘(8), generated by differentiation of the perturbation function;

. 2) computation of the terms of the right-hand members of equations (7) or
(8), generated by series expansion of uC—l/r3 or z \-1 / r3 (terms of equations
(7) or (8) included in the brackets);

3) computation of the terms of the right-hand members of equations (7) or

"(8) generated by the expressions

= (D*a-2mD) u,, DXz, V—lv

IO

47 4) Determination of the unknown coefficients of the inequalities from
Bl

%fiequations (7) or (8)«

S During the operation, transition to the next stage is realized only after
L .‘3 )

5'“jcompletion of the preceding computational stage. The sequence of operations

5?Eembracing all four stages forms a cycle, which is repeated as many times as

Lo - 13



"thefe are different complexes of inequalities to be computed in the total
process.

The program of the entire operation is not stored in the internal memory.

?jof the computer. For this reason, it is written on magnetic tape and, as needed,
' the parts of the program used to carry éut the individual computational stages
7f‘are transferred into the operational (internal) nmemory.

The program of each of the indicated stages can be further broken down
‘into a number of smaller sections, or program blocks. The blocks are named>in

 accordance with the functions that they perform in the program.

The opersational memory is divided into several banks.

Bank I (60 cells) stores the executive routine. One function of the master
program is execution of the transition from one of the four computational stages
to the next.

Bank IT (iébvcells) stores the characteristics of the complexes of inequal-

i  ities at the beginning of operation.
Bank IIT (120 cells) stores the quantities m, c

Mo, Wy Py Qyeens

0’ 8> Miv My

and the coefficients of the zero-order ineqqalities, 8. All of these quanti-
‘ties are computed beforehand and are fed into memory at the beginning of
"'operation.

Bank IV (500 cells) is set apart to store the coefficients of the first- to

(';:third order inequalities and the coefficient of the series expansions of ¢ and

- ig. This bank is £illed ¢

"3
fon
H
'..I
3

’fjficients are computed. The coefficients of some of the third-order inequali-
ties and all higher order inequalities are written on magnetic tape.

The cells of bank V are used for working storage.

S 14



K“erénk VI consisté éf 365 celis. ”Oné seétion of these cells is used to re-
cord the right-hand menmbers of the equafions (7) and (8) as they are computed,
- another to record the results of intermediate multiplications, and a third to
flrecord the coefficients of the complexes of inequalities as they are transferred
f:from tape.

Banks VIT (430 cells) and VIIT (260 cells) contain the routine for the next

- stage of computations. Specifically, in the first and second stages of bank
- VIIT are allocated the executive block of the progrem and the coefficients of
“the expansions of the derivative of the perturbation function and uC-l/r3 or

z Vci/r3.

The most complex routine governs the first stage of computations. It is
written so thét the transition to the second stage requires only replacement of
the executive block of the program. The third-stage program is designed to make

- use of the individual blocks of the first-stage program. The fourth stage of

 i‘computations requires a special program.

Logical diagrams are used below to record the individual blocks of the
program. The following system of notation is used for the various types of
operators:

Arithmetic operator A; transmit operator T; address subs?itution operator l@%ﬁ[

[‘F; reset operator O; forming operator @; logical operator P; unconditional
;i:transfer operator E; return-to-subroutine operat?r El'
?f The symbols are asrranged in the logical diagrams in thc order in which the

%operators funcfion. If the operator transfers control to other than its next

fﬁjneighbor to the right, this is so indicated by an arrow. For each operator

';idepending on the parameters, all of the parameters on which it depends 1s listed

??iin brackets. For the reset, address substitution, and formingoperators, it is

S ' 15




indicated which operator performs the given operation. For the logical opera-
154 o &

tors, the logical statement to be tested is normally indicated. In the event

{’the logic statement is not satisfied, transfer of control is indicated by an

{‘arrow. If the transfer of control is executed to a block whose dlagram is given

“ in another figure, the end of the arrow is marked by the number of this block

5;and the number of the operator to which control is to be transferred. The re-

‘ceiving of control from operators of other blocks is indicated analogously.

The program blocks are assigned the following numbers:
I) partitioning block; II) block for determination of initial cells;
IIT) block for computation of the arguments; IV) block for determining asddresses

of the products; V) block for analysis of the type of multiplication; VI) multi-

plication block; VII) multiplication check block; VIII) block for multiplication

by K{ﬂggj IX) master program block for computation of terms in the right-hand

 member of equation (7), generated by 82/ds; X) master program block for compu-

' tation of terms in the right-hand member of equation (8), generated by‘gg V=13

XI) master program block for computation of terms in the right-hand member of

equation (7), generated by series expansion of ug_l/r3; XII) master program

Iy
poro
Lidy

[T
-
,
Lty i
!

eI
fey
Liteg
B
-

f,?‘.i

+ sions for -

block for computation of terms in the right-hand member of equation (8), gen-

erated by series expansion of z N-1/ r3; XIII) executive routine for the total

operation.

4. SELECTION OF TERMS WITH CHARACTERISTIC A FROM
THE FXPANSIONS OF %5—;(1 AND 28 T
ua

Computing the partial derivatives of () with respect to s and z, the expres-

)

a
[}

J

g

[z

3

I

=]
[0

_-‘ fr— = - ] .
0" and - L N-1 appearing in the right-hand mewbcrs ¢

[e5)
N

tions (7) and (8) can be written in the following form:
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The expressions contained in the brackets are called rows of the expansion
. of 92/9s or 352/0z.
Let us now consider the problem of how 9$2/8s and 8Q2/9z can generate terms
with the characteristic A in the right-hand menbers of equations (7) and (8).

Everywhere in the expansions (12) and (13), ué-l, s¢, and z N-1 must be

~ replaced by the sums a7, sl Yz V=1, where u runs through all possible

Py Ty

characteristics of order less than the order of A for a given coordinate (in the

present case uoé—l and syl are included inUZupﬁ_l and.ZsHQ). Since u, and

S,

ZH have the factor p, with this substitution the products will contain terms
with different characteristics. From amongst all the products it is required,

‘fﬁin the case of the nth numbered row, to choose those which have the characteris-

Lotic A/an-l, since all the terms of this row have the factor (fX/a’)n_l =alt

in front of the bracketed cxprecsion. The quantities a , b , a_,...a8ppearing
1

AR I B ]

i
I
'

a;%in the expressions for the individual terms of the expansions (12) and (13) are

‘. power series in the parameter e’. In these series, we separate expressious
hﬁiwhich comprise factors associated with é'h and perform multiplication of the

G

¢1 complexes of inequalities only by these expressions. Then, from all the poscible

I

&
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" have the factor A/«

‘ éfoddcfs‘in each term 6fAfhe‘expansion,‘it 1s necessary to select those which

-1 ,h
n le/ .

Once all the products satisfying this condition have been chosen, we can

!?go on to the new value of h and repeat the cycle of computations. After all

7 wvalues of h admissible for the characteristic A have been exhausted, it is nec-

' essary to pass on to a new value of n and repeat the entire cycle of computa-

| N

~ tions for the next row, beginning with the zero value of the parsmeter h. Con-

sequently, two cycles of operations take place, one nested in the other, where

~ the cycle in n is the outer one.

We turn now to the problem of selecting terms with the characteristic

n-le’h from all the possible products generated by an individual term of the

expansion ofd5y/as or 0%/oz.

This problem can be formulated in a somewhat different fashion: for a given

7{ term of theweipahsion, find all admissible combinations of the n Ffactor-

" characteristics having Mo

 plied in order to obtain a product with the characteristic A

8-1.B 45 their product. Each such combinstion will

give the characteristics of those complexes of inequalities which must be multi-

n_le’h. In form-

ulating the problem, particuler mention is made of the fact that not every such

/ breskdown of the characteristic into n factors cen be utilized; the partitioning

- must be admissible for the given term. The need for pointing this out emerges

't;from the fact that the complexes of inequalities of the coordinates u and s can

i

'+ have the characteristics containing the parameter K ouly in even powcers, where-
’;asﬁk only enters in odd powers into the characteristics of complexes of inequal-
'Ezities of the coordinste z. Partitioning of the characteristic kl'r into the
’fifactorsl(e NS is a permissible partition for the first, second, and third terms

T

}ziof the second row of the expansion of aﬂ/as, while on the other hand the

O 18



| ‘éax;c:itioning intokok3 and.kB-k is insdmissible for fﬁese terms. In this con-

" nection is introduced the concept of "partition types." If the first of the
:?split factors contains an even power of ‘the parameter k, we say that the charac-

;:teristic is subject to u-type partitioning. In the opposite case, we call it Zégﬁz
.f,z-type partitioning. If the characteristic is subject to partitioning into more
%f‘than two factors, we speak of a sequence of partition types or of one complex
i, partition. For example, in partitioning the characteristic A =ke’2e2 into the

. factors k~e’2-e?, we are faced with a z-u-type partition; first the partition
“‘k-e’262 (z-type), then partitioning of the second factor e’ 2 into e’2.€”
‘(u—type). The sequence of admissible types of partitions for each term of the
row can be specified by means of a logical scale. We agree to code the u-type
partitions by O, the z-type by 1. Then a complex partition of the type z-u has
‘s code 10. The logical scale for the types of partitions in the third row of

9Q/9s is written out in the form

— ] S ' NN :

TS o e o s ialogore e o 7
L P O T S R T S N U T R B S ‘
T 1st © 2nd’ | 3rd| - 4th.  5thl . bth

- term term term term term term

It would be sufficient to alloceate two places for each term of this row.
The excess places are filled with zeros. In partitioning a certain character-
istic A into two factors, the first place is separated by & scanner probe from
?%the places of the logical scale set aside for the term of the row subject to
arity of the power of k in the first split factor is com-
WT%pared with the permitted parity determined from the logical scale. If the
_second factor is subject to further breakdown, the probe moves one place to the

:f’ﬁright and picks out the type of partition admissible for the second factor, and
a8

s
|
go

so on. Bach partition of A into several factors will be suitable for all

i
3

e
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f.both upé_l and s{ have the factor p. Consequently, for example, if upé—luvg

subsequent terms of & single row for which the type of partition, coded in the

next four sequential places, remains unchanged. This follows from the fact that

-1

;Ehas the factor A, then so do upﬁ_lsvg, spg uvé-l, Spésvé' In correspondence
" with this, having obtained the next partition, we carry out all the necessary

ijoperations, for a given term of the row, on the series, then we go on to the

next term (the logical scale shifting four places to the left relative to the

position for the preceding term) and, in the event that the type of partition

:' remains as before, we carry out, on the basis of the same partition, the opera-

 tions needed for this term, etc. If in going on to the next term there is &

Vjchange in the type of partition, we return along the row to the beginning of

that group of terms of the expansion of 9%/8s or 9(/dz which has just been
found in the operation (the logical scale must be reset in this case). The next

stage in this case is to obtain & new partition of the same characteristic into

% the required number of factors. The process just described is repeated with

the new partition. After all partitions of the characteristic admissible for a

given group of terms have been exhausted, we move to the right along the row of

bthe expansion of 89/85 or Bﬁyaz to a new group of terms which have the same type

of partition. Then the logical scale is shifted to the left so that the code

': for the admissible type of partition for the first term of the new group will

. be in the first four places of the memory cell.

oo
i

The characteristic A is again subjected to all admissivle partitions for

‘°fthe new group, on the basis of which & certain number of terms of the right-
' hend menmbers of equations (7) or (8) is computed each time. When all the

'ti‘groups of terms of the one row have thus been exhausted, we go on to a new wvalue

LQiiOf the parameter h. Using the new value of the characteristic Al = Aﬁyn'le/h+l,

G ', 20
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:ipfaviding of course that it éohtaiﬁéméni§>ﬁééétivé powers of the parameter e -,
the whole computational cycle embracing the selection of terms with the charac-
;»teristic Al.from the same row of the expansion must be repeated. Otherwise, we/650
ffcarry out address substitution of the cycles in n and reset according to the
fiparameter h, and, if M/a® does mot contein negative powers of the parsmeter a,
‘iswe execute'the computations for a new row. It is necessary to go on to the next,

 or second, stage of computations for detecting the negative powers (see section

3).
N 5. PARTTTTON OF THE CHARACTERISTIC INTO TWO OR MORE FACTORS
We note first of all that the charécteristic to be partitioned is always
an order lower than the characteristic of the complex of inequalities whose
coefficlents are being determined at any given stage. This is because the par-
tition is applied to Aﬁxn-le'h, rather than to A, where n-1 and h cannot be equal
to zero at the same time, since the 52 and b2 series are devoid of a free term.
Consequently, assuming that a certain characteristic is partitioned into parts
'of order no higher than the order of the characteristic being partitioned, we
always obtain the characteristics of the inequalities with known coefficients.
As already mentioned, the machine memory stores the characteristics of all
' the inequalities whose coefficients are to be determined. The factors into
" which the characteristic (denoted by \) is partitioned are terms of this block
=" .of characteristics.

b Tiet ns see how the charaateristicgﬂ(2 can be broken down into two parts.

Léélt is apparent that this can only be accomplished in six ways:

& i ek’ ek,
. ook, 0 Kee,
-

- ek, ekt

¢~ {(the zero-order inequelity has a characteristic 1).
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.it is readlly seen hoﬁithe paftitiéniﬁédﬁfocééé can 5é formalized.

For the first factor u, all the terms are picked out in sequence from the
f§block of characteristics whose order doés not exceed the order of the character-
ﬁiistic being partitioned. Each time, thé order number jl of w in the block of
M;characteristics is fixed. If it turns out that A /u comtains negative powers of

the paremeters a, €, e’, K, then that partition is rejected as inadmissible.
In the order described in the preceding sectlon, & test is made to determine
whether the parity of the power of K in the first factor corresponds to an ad-
missible type of partition. If correspondence does not exist, we choose the
next characteristic for u and repeat the computational cycle.

So as not to overburden the memory with the factors into which a given
characteristic is partitioned (their number can be rather large), it is better
to wait until all the necessary operations have been carried out on the com-

B plexes of iﬁééﬁ;iitiés on the basis éf the preceding partitién beforé going
ahead with the next one.

Let us now comsider the case of partitioning into three or more factors.
The second factor in each of the six alternatives for the partition of'ek2 into

“‘two parts can be subjected in turn to partitioning into two factors, thus ex-
hausting all possible partitions of €k into three parts. Consequently, the
order of operations in the case of partition into three or more factors might be
}the following. Having obtained the next partition, for example 2) &above, e ¥ B

... we test to see whether the number of factors is sufrtficient for the given row of

. 89/ds or 92/dz. If such is not the case, the second factor is subjected to all
\possible partitions into two parts. The procedure remains exactly as before.
., However, in order to be able to obtain the next partition 3) k.ek of the initial

yyicharacteristiceﬂcz after exhausting all: partitions of k2, in going to the stege

L , 20




bfvﬁértitioninglfgrwe'mustwétofé the characteristic paftitioned in the preceding
stage, as well as the order number jl of the latter characteristic, which has Zéél
- already been tested in the preceding stage as the first factor. This can be
%;accomplished by the following procedure,
j The first of the factors into which the characteristic is partitioned is

entered in the cell Bl’ the second is entered in the cell B:

B, B, B. B, B D,D,D,D,

oy <Ta> Gad < KT

Then in the cell numbered :Jj.> we enter jl’ the order number of the first factor

1

in the block of characteristics. In the cell Dl is stored the characteristic
- to be partitioned at this stage. If the number of factors into which the
characteristic is partitioned proves to be insufficient, we transfer the contents

':\of D, to Dh’ D2 to D,, D, to D, and B to D

3 3771 2 1°

" pulse moves to the right from D3 to B. Simiiarly, we let a shift pulse to the

7 left move from B, to B, and from<:j3> to <J

" quantities will be fixed in the cells D

FPiguratively speaking, the shift

1 As & result, the necessary

X <j2>, BE' The new contents of the

cell Dl is subjected to partitioning and the new pair of factors is entered

into Bl and B. If the number of factors is still not enough, the process is

" repeated. Finally, the cells B, Bl’ B,,es. will contain the required number of

2
' factors, the cells <J>, <j1?, <j2>,... will contain their order numbers in the
f{;block of characteristics (j, the order number of the factor contained in the

the contents of +this cell with the cells of

=f%the characteristic block). The set of numbers j, 3q1s dpo 33:--° comprises that

©/ informetion relative to the partition, which is needed for operation of the

' ‘subsequent program blocks. To obtain the second and subsequent partitions into

;:in factors, the contents of D

1 are subjected to further partitioning into two

I | 23



' ‘factors. In this case, oniy'%ﬁe contents of the cells él,‘B,<{j

1‘>” and < §> will

change. Each new partition is put into‘operation, and only then do we obtain

~ the next partition. After all possible partitions of the contents of D, into

1

© two factors have been exhausted, it is required to obtain the next partition of

' the preceding stage. It is required primerily for this to renew the contents

'1 of the cells Dl’ Bl’ and.<jl} at the instant of the last partition of the pre-

' ceding stage. This can be done by transferring the contents of the cells D

2
into Dl’ D3 to DE’ Dh to D3 (shift pulse to the left) and by & shift pulse to

the right, proceeding from B2 to Bh and from<<j2> to <jh>° Clearly, after the
next partition of the preceding stage, the number of factors will be insufficient
and it will be necessary to go on to the next higher stege, as already described.

As a result, new quantities appear in the cells BB’ <j2>, and D The charac-

l.
teristic transferred into cell Dl is again subjected to partitioning, and so on.

It may happen thet all partitions of the preceding stage have already been ex-

" hausted. In such event, we proceed just as in the exhausting of the partitions

in the highest stage, i.e., we effect a transition to the next lower stage. The
process of partitioning a given characteristic ends when all partitions of each
stage have been exhausted.

An operational flowchart of the partition block may be written as follows:

. X23,X22
N 02 ' ‘ K24, X123

‘f . . . s~ - ; -1, s h -
& 'FJJ,)Ps(J,‘J)}As(J,)%m Py (17| A2 4T Fg (DE, s Tﬂ;(uﬂsﬁ'*”l%tw
L.

}

0, (z)l 0,(,)

The operator Ol receives control from the executive block. The initial

characteristic must be trensferred to the cell Dl in this case. It renews the

'initial velue of the parameter i (i = 2) and position of the probe (see P8).

. -



e e e i

3

O, remews the velue of the parameter j, (jl = 0).

®,, on the basis of the order of characteristic A to be partitioned at a

3
!'given stage (found in the cell Dl), forms ‘the largest value J that can be as-

f sumed by the parameter jl (J is equal to the number of characteristics whose
"order is no greater than the order of the characteristic A).
P5 tests fulfillment of the indicated logical statement. ZEE@_

A6 selects from the block of charagteristics the one with the number jl and

} transfers it to the cell Bl; it foxmm'XAu and enters it in cell B.

P7 tests fulfillment of the following condition:’X/M contains no negative
powers of the paremeterse, e’,a, K.

P8, by means of the scanner probe segregates from the logic scale the
admissible type of partition; it tests Ffulfillment of the following condition:
The partition actually obtained coincides with the admissible type.

P9 tests fulfillmént of fhe folloﬁing céndition: 1 =7, where T is the

- number of factors into which the initial characteristic must be partitioned.

AlO determines the order number j of the characteristic located in the
cell B.

Ell transfers control to the biock for determining the initial cells.

Tl2 transmits the contents of the cells (shift pulse) Dk-—b-D —D

k+1’ B 1’

i Bk-—>-Bk+l, <Jk>—+-<3k+l>, beginning with the largest value of the parameter k.

Fl3 increments the parameter i once; it shifts the probe one place to the
L, wight.

Rt -

pé; F15 decrements the parameter i once; it shifts the probe one place to the

co | Pl tests fulfillment of the following condition: 1> 2. If the condition
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"is not fulfilled, it transfers cantrol to the executive routine, which executes
transition to & new group of terms of tﬁe same TOW.
{; Tl7 transmits the contents of the cells Dk—*— Dk-l’ Bk.—.'Bk-l’
f.<5k>_”<jk-1>’ beginning with the smallest value of the parameter k.
| 6. STORING THE COEFFICIENTS OF THE INEQUALITIES IN MACHINE MEMORY
Below we will write the inequalitiés in a form differing somewhat from that

"~ used in section 2. Inasmuch as the arguments Ty T are computed during

2,.0., Tk
the course of operation according to equation (5), which gives both the values
"~ of +T7and -1, it is sensible to write the complex of inequalities with charac-
teristic A in the coordinate u as follows:

a e

+

(1)

- 9. . 5 piny da 8
u . o7 192y _$a
ol S S DA T n—=e'e ka’,

agsuming that T runs through all values defined by equation (5). We will con-
sider that the groups'of the complex which have the form

D R e
s ’
+

are numbered in the order in which the arguments of the groups 7, are computed

k
during the course of operation according to equation (5).
Tt is supposed in equaticn (14) that for iu odd, i assumes values of il/2,
7‘i3/2,... In this case, we will spesk of a series in odd powers of {, otherwise
f;:of a series in even powers.

For programming purposes, it is convenient to assume that the index of the

coefficient in every case assumes integer values. Consequently, in the case of

YC lgseries 4n odd powers of { we will write equation (14) in the form

u)ﬁ;1 i\ "‘2‘—1+T
S S et an
[

S
;- jassuming that i obtains integer values in this case as well.
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A very important problem is to esteblish reasonsble limits of variation of

the index i. The choice of these limits rests, on the one hand, on the desired

" accuracy of the computations, on the other hand on the capacity of the opera- 653

/ tional memory. Expanding the limits of variation of the index i, of course,

7 Increases the machine time for the task.

The quantities Ai +» in general, decrease rapidly with growing lil. For
b4

" instance, the coefficients ai of the zero-order inequelity have a value of the

Joi

order m o TFor higher order inequalities, the coefficients Ai + can have
2

" orders with respect to m several units higher or lower than |2il(the order al-

ways remains nonnegative), these deviations having a tendency to increase with
increasing orders of the inequalities. If the coefficients of the inequalities

of different order were to be computed with the same accuracy, the situation

- Just noted would necessitate an increase in the limits of variation of the index

1 with incréasing orders. This is not the case in reality. The reason for the

o "geatter" of orders of the coefficients is found in the small divisors which a-

l; rise in determining certain coefficients from the systems of equations (10) and

(11). A small divisor not only lowers the order of the coefficient, it also
lowers the accuracy with which it is determined. In view of this, the right-
hand members of the equations for determining the coefficients of higher order

inequalities are computed, generally speeking, with greater error than the right-

f'i hand members of the equations for determining the coefficients of the inequali-

fities of the preceding orders. Consequently, ther

%accuracy with which the coefficients of the various orders of inequalities can
‘be computed. On the other hand, it is &ll right to know the higher order in-

fequalities with lower accuracy, since they are multiplied by smaller character-

iistics. Thus, in part at least, the loss of accuracy in determining the

o
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» cogfficients with inér;asiﬁgro;aersrof‘ﬁhemiﬁéQAélifieé’ié‘compensated. In view

. of the fact that the "scatter" of the orders proceeds in parallel with the re-

; duction in computational accuracy, the limits of variation of i for which all

 nonnegligible terms are teken into account are not teken into account with in-

f;creasing orders of the inequelities. On the contrary, they are brought closer
f:‘together, albeit slowly. 1In formulating his lunar theory, Brown was not com-

" pelled in any case to use a value of lil any higher than five, and for inequal-
51 ities in odd powers of {, never a value of IEil higher than ten. For the
'1,satellites of Jupiter (VI, VII, and X), requiring lower accuracy, the limits

~can be fixed even narrower. This ié confirmed by the work of S. S. Tokmelayeva
in determining the perturbations of the satellite VII.

We will assume below that i varies within the limits -4 <i < +4, and in
those cases when the series is in odd.powers of {, =3 < i< +4. Ten cells of
:_‘memory ére'allocated for the coefficients of each grouﬁ of terms, these cells

containing in order of increasing cell address

Ay, A3 )\—2, w A

which are the coefficients associated respectively with

e e "
84T FeBT  —dT 2T 7T 2T Tawt TCws T
C 8+ y > 8+ N i y & s =y ¢ - .

In the case of series in odd powers of {, we agree to leave the first cell

. of the group empty, placing in the remaining cells

whirh ava +Fha ~Aqafe
wiaa S 0 TS CoeIl
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" A cell corresponding to the index i = O will be called the initial cell of

the group of coefficients, and whenever the group is the first one in the complex,

“ the cell in which AO Ty is stored will be called the initial cell of the complex
" 2

fﬁof inequalities. Knowing the group number k and the number NO of the initial

f\cell of the complex, it is a simple metter to calculate the number of the

' initisl cell of the group. It is plainly equal to

No+9k—1). (15)

is (65&

The number of the cell of this group in which the coefficient Aj_T
r k

| stored is equal to

N,+9{k—1)-i-1.

Inasmuch as the coordinate s is the complex conjugete of the coordinate u,

" the coefficients of the inequalities of this coordinate can be easily derived

_if the coefficients of the inequalities bf the coordinate u are known. Substi-

" tuting ¢ and.C-l into equations (14) end (lhe), we obtain, respectively,

W

BN g gy e (16)

|
sz . RN . . . . w Y. ” <L . . i
AN \7 /‘i, - >_2‘+’" N \» A :__—'2"‘ s (168:)}
I

Equations (16) and (16a) show that the initial cell of the group with argu-

. ment +Tk in the complex sxg/a.is the initial cell of the group with argument

e
!

!

j?equation (15), for the argument -7, has the order number X - (k - 1), where K

"/ .1s the total number of arguments of the inequality, and k 1s the order number ol

%4 the argument +

R
~1 case is equal to

3

j-Tk in the complex ukgﬁi. It is not too difficult to compute its number from

Ly (see section 9). Thus, the number of the initiel cell in this

oy

oy

o
b
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|

Nos S (K—1-9k—1). - (17)

For the inequalities of the coordinate z, we adopt the following form of

! writing:

’ - - =3 .
z, V — . . X Femitiogt
Ao ) PR o P ey, ) r
‘ i

":assuming that underneath the first summetien sign v takes on the first half of

the values determined by equation (5) (it is readily seen that for zpr:i'the

' . number of different T is always even), while underneath the second summation

sign T takes on the second half of the values determined by equation (5). If

we make use of equation (6), we can write

- Y . '.\' gl
SEEe e e T (18)

[ 1

.'and, if o enters into the characteristic in an odd power,

QK e oy AT e

S50

iy relation v , . =
fo | ly'k L'k

.V —1 T e e = AN — -
— —— oy, (HTET g Ty, AT (188.)
a h S, T s g, —
i P

7% J

Comparison of these two expressions with equations (1k4), (1ka) and (16),
(l6a) shows that in the case of the coordinate z we must proceed in order to

compute the initial cell of the group with argument—rk, when k< K/2, the same as

. for the coordinate u, i.e., calculate the nunber of the initial cell from equa-

;tion (15); for k > K/2, it is necessary to use equation (17) for the coordinate

:5° In this case, of course, it is essential to bear in mind that the sign of

0] 1 .
nvolved muct be chenged in the second cace.

Because in the derivation of equations (18) snd (188), we mede use of +the

= =P, _ , which exists between the coefficients of the groups

L .30



‘with argument +Tk and Ty it is sufficient to store in memory only the coeffi-

cients of the first half of all the groups of the complex of inequalities of the

‘coordinate z. Applying the rules cited above, we will always invoke the

’‘initial cells of the first half of all the groups.

7. TYPES OF SERIES MULTIPLICATION [625
In multiplying the series byveach other, we will distinguish four types of

multiplication, depending on whether the terms in the cross-multiplied series

~ are arranged in descending or ascending powers of (.

Type 1 multiplication. - Both series are arranged in ascending powers of [.

This type of multiplication occurs in the multiplication of groups of terms in

- the coordinate u:

C gt N rsine . NN 24 T4E |
2"‘;‘. ':C2'+ ’ 2,'!\)'5', 1(:21—0- - 2";/"'“‘ nogkk, g -
i

i +

Type 2 multiplication. - The first series is arranged in ascending powers

- of £, the second in descending powers, which occurs, for example, when a group

St N - v it N\ 2T 3y N . R
3 ! Zl"t' < A — 5 "“2& .;-"‘.—u','.\)“;",:: M
i ) - - "

of terms in the coordinate u is multiplied by a group of terms in the coordinate

S3

Type 3 multiplication. - The first term is arranged in descending powers

f;;of {, the second in ascending powers. This occurs when a group of terms in the

]fjcoordinate s is multiplied by a group of terms in the coordinate u:

et )

T 9% 47 SN\ e T
Dk, LT By T X e
4 i ik

Type 4 multiplication. - Both series are arranged in descending powers of

'ij. This occurs in the multiplication of groups in the coordinste s:

s kK —
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For the sake of simplicity in writing, we will consistently represent series

- expanded in even powers of {. We note éné fact that will be used later on:

ivThe coefficients of §_21+T+0&n the proddct series in the third and fourth types
. are equal to the coefficients C21+T+Oinjthe product series in the second and

ﬁ first types, respectively.

If the series is expanded in even powers of { , we say that it has a parity
index equal to zero, otherwise it has a parity index equal to one. The corres-
ponding parity index will be represented by a superscript O or 1 alongside the
series symbol. Then, in multiplying two groups of terms, we may encounter the

following cases:

Type 1] multiplication Type 2 multiplication l
[

1) - b 1) u°- s,
2) u'-u’, 2 u' s \
3) -l 3) - s,

4) dt -l 4) u*- st

.+ where u and s denote the groups of terms arranged in ascending or descending

powers of [, respectively.
For greater ease of visualization, these products are presented below in

tabular form. 3In the tables, the sum of the products in one column is equal to

_“Tthe product series coefficient di at the top of the column. Since the indices
‘!:T and o are not significant for our purposes, they are not written out, and the

,'Ecoefficients Ai.T and;iiiT are replaced by bi, Cy e

’




Typel multiplication
1st case:

(b8 b_ 0+ b - b 1P 500 5 - b0 - B85 - B 08) X
X (=840 07+ e T2l 40 -+l 400+ 8) =
=d_84+d "t +d T+ d TP d P+ d P4 G+ 0+ d 8

boe—y  bic_y bic_, bse—, by,
bic—y by b, b, bye—y Lo
bosc_y b_jcs b, bic-. bic—y 5o ooy
bgc—y bose—y b_jo, b beo_y by i Goo
boseg  bgey e, boiy 08 bioy Gl bt il
b_,c, b_yc, b_oc — bic v b R
Py b_sc, b_zfg
b, bicy

2nd case!

b_ic, by,

bt b L+ b b T - 5 0 - 50— 6.5 - 607 X

X (eS8 el 4+ c ol v -

R R

el

—d T d S e e o e d e e L d

3rd case:

(ol b bl byl o s B by i 0 b8 - bG8 X

be—, b, v5e—y b oo
be—s b tiog 0503
b_cy oL 9-Cy 5.Cs
b, — - 5.6 ~. 0
b I—aCy b_.c b,
J—gC, b€ _b~ o
b_q5 0—sCs
i/_sc-,

U_iC_.;*_

bsc—g [pery

bic, b,

(N

6_102 b“CQ
b_.cy

b. .

b_yc,

b_IC:;

. ! .
Bl bI}C-—nv 01‘0—1

o~

UCU

buc,

0.y
bics

b__«¢

s

" vn " >
X (e—ge T4l 4+l o -0 el e )=
=d T +d 0 d T d T - d U - dP - d P - d U
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be—g by by bye—y b
boic—y by—y by by by b,
boge—, b_c_, bge—, by by by
bgcy  b_sc, b0y 04G bicy  bacy
b_.c, b_je, b e h 6y E lﬁ
b by b_—z_c_z b_—_@ byC,
b_ey,  b_ges  b_sey b_ics
b_e, b_yc, b_sc,

b.c,

bc,
bycy

b_ic,

)




4th case:
(bt T4+ b 6 -5 - 6,0+ 5,0+ 58+ 607) X
X (gt i 4B+l 4o P 4P+ e )=
=d_ 8 4+d i +d i -d P+ d, 0 - d - AL - - d B

[T

be—s  bic—y  biog bye—y b
! b_c—, by, b,.c_, byc_y bse—y bcy
b_scy b_jc—y by, b, bye—y bye—y b.o_,
| bags bt bog be  be be be Lo
‘ bser  bsc b—.6 ber biey b oo by
bge, by bor be o by
v—3C3 howey ooy ey Gog by
b_ycy by, bic, bo, b
Type 2 multiplication
-1st case:

(b b bt b T2 b b e bt - bS8 X

Do (R I A S R e e e e R R G L I e A S
. =d_{84d i e a0 e d P - AT - d S - d8
by b, o oo oo,
1);322_ HZ byc, 9.¢: ¢ b e 0,6
{J;‘*(."& b‘300 Lo e hotly b‘«c\,‘ b0, 248 é"‘f_,
bosom Omomy e Cidm0fn vim beo b
; | bosey ey Gefy b vom bony Do
ceiog bl o b_geg b0y be—y 0.0y
Gy bgey boyory vl by

2nd case:
(b6 .o b U 50 H 0 - 5,0 - b3 4 b0T) X
X(e—l¥a-c_ -l 7 ol (ot g Ut - e 8 =
=d_"Td T d v o md T d T - B - dE = dEV

bc, b,04 oy byc:
b . bycs bycy e byes by
2 ‘ b_icy b,c, 0 bsey bac, byes
& b_sc, b_sc, b_c, boe,  biey  bity  bycq by
O by b_joc
:
by, b_scy
b_sc—5
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3rd case: ‘
(&Pt b L0 bl b L b -+ b G - byl bye® b,t8) X ,
X (C—glT 4 col® - c180 -+ P R N e = e =
=d_ T d T d T di - d 0 d dd + d&

bycs {7_124 byc: bsc, bicy
b_.cq bycs b.c, b.c by by
L Z:C: RSO bovy Uy bicy by bacy
bty by bgems DG Domy BiCo
b Gy 0—yCog b_sC—y b0 byc—3
“ se:
e e (b_i™ T4 bt o+ b= HU b= b+ b;j’{) X
X (Cmgl? -+ €=l 3= P e O I 4 i“‘).—— 8
—=d_ 8 d_ T e d T A G0 e T e ws dS - di
bocy oic, 0.¢, 25C4 by l
b_.cg 24y b, bz_c's by biey
. o boge  boaCo 5l 0,81 bie— bac—y  bc— n
”i‘ bogCow bogCoy 210y b€ byc—y bac—y | w

G G Gy by boe—y bic—y

8. PRINCIPLE OF CONSTRUCTION OF THE GROUP MULTIPLICATION PROGRAM
The computation of the products cited in the preceding section can be &ap-
proached differently. The objective may be to compute the coefficients of the
:products as the sums of all products stending in one column. The progrem to
fﬁ icarry out this objective can be based on specification of the value of the
:indices i and k for the factors standing in the first row of the first column,
{followed by address substitution in i and in k and a test of the conditions

Ii - kl < L, ‘kl < 4. However, such & program is uneconomical from the view-

L @point of machine time, because the computation of each product is preceded by a

o P
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laiéé nurmber of auxiliary opefétiéhé, whére a sizable portion of the address
substitution has to be carried out as a:dummy operation, no reading being made
- ‘until the logical statements have been fulfilled. Finally, it must be pointed
~out that not all of the products in the columns need actually be computed, since
- many of them are equal to zero within the limits of permissible error.

Another approach to the problem consists in preliminary rejection in each
column of those terms which are obviously equal to zero. But probably the main
advantage of this approach is not that it obviates the computaetion of a certain
‘number of products, but that it permits the computations to be presented in a

- form more suitable for programming. The most important problem in this case iszggﬁi
finding which terms can be neglected. If we assume that the orders of bi and
cy relative to m are equal to lzil in the cases of series in even powers of (
»andl 2i - ll in the case of series in odd powers, then in the tables of products
fffthe nonuhdéiééd}éa téfﬁsﬁhavéﬁéh'bfdéfﬂéf éﬂmleééfwﬁéﬁ'(préductiiﬁ even powers %;%
" of {) or nine {product in odd powers of { ). For the satellites VI, VIII, and X
7 of Jupiter, m is near 0.07. Consequently, in the cage of an ideal distribution
‘ of orders, there can be no doubt that the nonunderscored terms are negligibly
small. In real situations, the orders of bi and c, can depart from our assump-
~ tionms. Moreover, the coefficients of the lowest terms in the expansions of bi
’: and cs in powers of m have a tendency to increase with increasing orders of the

7_:inequalities, so that the product of bi and c, can prove to be much larger than

k

~ would be expected on the basis of its order. Therefore, the figures cited shove
~ are only capable at best of giving an approximate idea as to the magnitude of

i; the rejected terms.

b On the other hand, it is at once apparent that the unfavorable factors
U
f}iaffecting the magnitude of the rejected. terms begin to be noticeable only with

g
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‘increasing orders of the inequalities being determined, whereas the required

.accuracy of the computations in this case is lowered, Consequently, in this

- case the two processes must compensate one asnother up to a certain power. Ex-

‘amination of some of the most unfa#orable cases reveals that in keeping only the

f underscored terms we can be assured of the accuracy reguired for the satellites

VI, VII, and X of Jupiter. In the working program, mainly for experimental

purposes, & so-called multiplication check block is included. In this block,

the sum of the coefficients of the product of a pair of complexes is compared

‘ with the product of the sums of the coefficients of the factors. If a term with

- & large value is not taken into account, the multiplication check block shows

this up almost without fail. In any case, it may be noted that the permissible
error can be reduced to zero by broadening the limits of variation of the
index i.

Let us now see what properties of the product can be drawn upon in formu-

- lating the program for multiplication of the groups of coefficients.

Considering the expressions for the coefficients of the product series, or,
more correctly, those parts which are summed from the underscored terms, we note
the following:

l. TIn going from one component of each coefficient to the next, the index

N bf the factor b decrements once. The corresponding index of the factor ¢ in-

w ;crem.en'bs once in type 1 multiplication, in type 2 1t decrements once.

2. In going from the last component in the preceding coefficient to the

;f first component in the next coefficient, the index of the factor b increments

four times. The corresponding index of the factor ¢ decrements three times in

{; ﬁype 1 multiplication, in type 2 it increments three times.




e

3. The number of components in the coefficientsraséoéiated with consecu-
tive powers of { &are alternately equal to four or five.

4. The parameter i for the product series varies within the limits

" -h +§ <1<+ h, vhere § is the result of negating the equivalence of the par-
ity indices of the multiplied inequalities.

6. The index of the factor b in tﬁe first component of the coefficient
with the largest negative index is always equal to zero. The corresponding
index of the factor c in the type 1 is equal to -4 + € in type 1 multiplication
(see 5, above), in type 2 it is equal to 4 -7y, where y is equal to 1 when the
parity index of the first factor is equal to 1 and the parity index of the
second factor is equal to O, and is equal to zero in all other cases.

In the expressions for the coefficients of the product series, we cen pick
out groups of terms other than those sbove. If we recognize all terms of at
ieast twén%iefh bfdéf (assumiﬁg“%hatbﬁifand c, are of orderhﬁlgi 5, the coeffi-
cients of the product will be summed from five or six, rather than four or
five, terms. The pattern of formation of the coefficient could have been de-
scribed in terms of properties analogous to those Jjust cited. The magnitude oflféég
the error permitted in computing the individual coefficients would be even less
in this case. But we will not consider this any further.

The methods indicated permit the formulation of a group multiplication
i:program.having only the following at the input: 1) the number of initial cells
‘of groups to be multiplied; 2) the psriily indices of the series; 3) multipli-
;?;jcation type code.

In our problem, the sequence of series multiplication types is determined

|

ﬁjiby'the term of the expansion of 4Q)/ds or 3Q/dz subjected to partitioning at
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fhis stage. Let this be, for example, 1<£;fs2(§ ;1 Whatever the partition, we
must first multiply a complex of inequalities of the coordinate u by a complex
{‘of inequalities of the coordinate u (tyﬁe 1 multiplication); then the product,
:‘;hich is always in ascending powers of g, must be multiplied by a complex of
’ ‘inequalities of the coordinate s (type 2 multiplication). It is apparent that
’ fhe type of multiplication for all combinations of groups of a multiplied pair
of complexes will remain the same (the case of the coordinate z will be con-
. sidered separately).
If we agree to represent the types 1, 2, 3, and 4 multiplications by codes
| 01, 10, 11, 00, then the code for the types of multiplications of three complexes
will be Ol10 in the investigated example. In general, if the sequence of multi-
plication types is coded, the first pair of digits is the multiplication type
" code for the first two complexes, the next pairs of digits give the multiplica-
tion type codes for the product of the preceding complexes by the next complex.
In the expansions (12) and (13), we encounter partitioning into more than three
factors. We agree, however, to allocate eight places to coding of the sequences
of multiplication types in individuel terms, filling the remaining places with
Zeros.
The scale of multiplicaetion types of the third row in this case has the

form

5th term

T T l
101‘1305110 olo ojlojofo

6th term
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Since one memofy cell of the Strela computer has only 43 places, the logi-
cal scale takes up two cells. In the second cell, the terms asre not ordered
v:from left to right, but from right to left. We note one fact that will be cause
* for concern in careful inspection of the scale: The multiplication type code is
‘written on the assumption that the factors in each term are multiplied in order
from right to left, rather than left to right. The reason for this is that it
is more convenient to work with the factors into which the characteristic is
partitioned in just the opposite order, since the order number of the character-
istic of the next factor is always located in the reference cell <j> (see sec-
~tiomn 5).

The type of multiplication of the next pair of complexes is segregated
from the scale by means of a scamner probe. In going over to multiplications of

- the next pair of complexes, the logical scale (first cell) is shifted two places

Ar_-to the left. The scale operations are described in further detail in section 15.°

Let us now consider how the parity indices and initisl cells of the multi-
plied complexes can be established.

As already mentioned, the machine memory stores the characteristics of the

o PR . . il /i2i ill_.

complexes of inequalities. Each of these characteristics A = e7le K 300 * is
written in memory in terms of the power exponents of the parameters appearing
in the characteristic.
are written in the first, second, and third addres-/%6l

The indices ih’ i2, il

"' igses of the first cell, i, is written in ihe first address of the cecond cell

3

;E'allocated for the given characteristic. In the second address of this cell is

 ; written the number of the initial cell of the complex having the given charac-

T

%fjteristic. This pair of cells may be represented schematically as follows:

S ko




The number of the initial cells of the complexes can be eagily computed
‘ ‘prior to the start of operation, since the number of groups in each complex is
well known, and to each group is allocated nine cells.

The characteristics are arranged in memory in accordance with their in-
creasing order, beginning with zero order and ending with the highest order
characteristics to be taken into account.

If the parameter o enters into the characteristic of a complex in an even
power (:'LlL even), all groups of this complex will be in even powers of {. In

. -case ih is odd, the groups are in odd powers ofrC,rhin”viewﬁpf this, the parity
‘indices of the complexes can be obtained by invoking the last place of the
": binary representation of ih in the characteristics of these complexes. It is
obvious that this can be very simply done, provided the order numbers of the
characteristics are known. The parity index of the product is obtained as the
result of negating the equivalence of the parity iﬁdices of the factors.
Knowing the order numbers of the characteristics of the multiplied com-
plexes, we can invoke the numbers NO and Né of the initial cells of the factors.
L;fThe address of the initial cells of the multiplied groups can be calculated
;f;from one of the combinations of equations (15) and (17), depending on the type
{;jof

nltinlication.
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9. COMPUTATION OF THE ARGUMENTS OF THE GROUPS

In multiplying the complexes of inequalities, we run up against the need

- for adduction of like terms. Let it be required, for exsmple, to multiply

o~
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The like terms in the product are those with identical power exponents of
{in the second and third groups, in the third and fifth groups. In order for

the computer to be able to adduce like terms, it must operate not only with the

coefficients, but elso with the argumgnts of the groups. Like the characteris-

tics of the complexes, it is impossible to store the arguments of the groups in

- memory due to the large number of arguments. It is necessary, therefore, before

[

multiplying each pair of complexes, to compute the arguments of their groups
anew. Equation (5) is extremely useful in this respect.
To compute the arguments of the groups of & complex, its characteristic 1s/662

transferred to the input cells of the block for computation of the arguments.

. The operationsl flow diagram of this block cen be represented in the following

- forms

1]

o ]
T4 0y () O (4N 0, (L 0V O (LY Ayl i ) 7y (K5 3Ty (313 P €31 :! SO R ICIRS IS Y e AT WeL n‘)

w2 Pa {1310

el

'y

The operator Al picks out the indices il’ i2, i3 and represents them as

co L
- itintegers.
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'02, 03’”Oh’ 05 renew the initial (zero) values of the perameters indicated
in the parentheses.

A6 makes a count according to the equation
T=(i, — 20 )¢ ({,—2)m -+ (i;—2i3) g.

F7, F9, Fll’ Fl3 increment the values of the indicated parsmeters once.
T8 transmits T, to the cell numbered Py *+ ke

P test for the end of the cycles.

P17 Prps Fry
It is readily seen that the given computational scheme provides for output

of the arguments in the order such that the number of the argument -T. is equal

k
to K - (k = 1), where K is the number of all arguments, k is the order number of
the argument +Tk'

Thus, as a result of the operation of the block, in the cells Py * 1, P+ 2,

0
 eeey 15 + K will be obtained the arguments of &ll groups of &a given complex and,
in a certain cell <X>, the number of groups of the coﬁplex.
10. BLOCK FOR DETERMINATION OF THE INITIAL CELLS

As a result of the operation of the partition block, the cells <j>, <ji>’
<j2>,..., <jn-i> contain n numbers, which are the order numbers of the charac-
teristics of those complexes which are to be multiplied. In the present block,
the first of these numbers is first picked out and, from it, the initial cell
fi and parity index of the first factor are determined. It can happen in this case
Migthat the coefficients of the complex are written on tape rather than in internal
f:imemory. In this case, they are transferred into a special bank in.the opera-
. o the reference cells are also transferred the arguments of

i?fthe groups of the complex and their number, computed by the block for determin-

;?§ing the srguments. The same quantities are then determined for the second

i
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"Vféétor; Since the operational memory stores the coefficients ofvtﬁevinequalities
of zero, first, and second order and some of the third-order inequalities, the
::coefficients of no more than one factor need be transferred from tape. Also, in

ffthis same block is performed a computation of the quantities € and § (see
. section 8), after which control is transferred to the block for determining the
addresses of the products. After multiplication of the first pair of com-
plexes, control is again transferred to the block for determination of the
’ initial cells, which calls into operation the third factor with characteristic
={fnuMber jg, all the quantities for this factor pair up with the corresponding
" quantities obtained for generation of the preceding factors, and so on until
all jk are exhausted.

The logical diagram for this block can be written in the form

S XOXNB M VI | — | M

S LTH,_(J’) osfif}[m GIe. 2, I £, }r‘”?* po(3<2) &BTu] j} P (J‘"<2)]TLJ T ;lT“ lTW Aml—.

)

ad
P IR

The operator Tl trensmits an instruction as to by-passing of the operator [663

T. in repeated use of one partition of the characteristic. It is essential for

9

the shortening of machine time.

O, remews the initial value of the paremeter 3 (5 = 0). 3 is the number

of the factor.

O3 renews the logical scale by transmitting the contents of the cell =9

. (see section 15) to the cell of the logical scale G.

[

L A_ selects from the block of characteristics the characteristic of the next
Lo /
42 i factor.

S0 E., returns to the subroutine, the block for computation of the arguments.
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oo L

P7 tests for fulfillment of the condition N

coefficients of the complex are written on tape.

0> 4000, which is true if the

Eg calls for bypass of the operator T or return to it (see Tl).

9

T +transmits the zone of the magnetic tape with number NO to the reference

9

. bank of the operational memory.

Tll transmits to the cell R, in which is formed one of the commands of the

multiplication block, having the form

, I
]

x|

‘ (cf.cb of the block for analysis of the multiplication types), as the first

15
address the number of the initial cell of the reference bank, to which are
transmitted from tape the coefficients of the complexes of inequalities.

T12 executes the same operation, but with respect to the second address.

Tlh transmits to the first address of the cell R the number 6f the initial
cell of the first complex to be multiplied.

Tl6 transmits to the second address of the cell R the number of the initial
cell of the second complex to be multiplied.

T15 and Tl7 segregate the parity indices of the multiplied complexes.
A 8 computes € and 6 for the series to be multiplied and certain other

1
suxiliary quantities.
11. BLOCK FOR DETERMINATION OF THE PRODUCT ADDRESSES
j!; In multiplying the complexes, we will adhere to the following order of
operation: all groups in the order of thelr anumbers arc firet multiplied by the

;;fgfirst group of the second complex, then in the same order they are multiplied

3f;by'the second group of the second complex, etc.
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We send the products of all the complexes to the portion of memory intended
for this purpose, the product bank. For the coefficients of a product of two
?‘groups of terms, ten cells of this bank are allocated. Furthermore, one cell is
{'set agide for writing in the argument of the product. The product bank must be
f as many groups in each of the ten cells as there are different possible argu-

© ments T of the product of complexes. This can be represented schematically as

"o follows:

T

» ( a-+1 a-—+2 l a+K

OO O,

0th group, 1st_§roup‘ (K-1)th group

The numbers of the groups to which the products of each pair of groups of 66k
complexes to be multiplied are to be transmitted are computed in the block for
determining the addresses of the products. In this block are systematically

. formed sums of the arguments of the groups:

TG, TG, TG, ..l T Oy Oy

After formation of the next sum, it is compared with the contents of the
cells & + 1, a + 2,... of the product benk (all cells of the bank are cleared
prior to computation of the product of each pair of complexes). In the case
' whenurn +qf turns out to be equal to the contents of one of the cells a + 1 + p,
the product of the group with number n by the group with number ¢ is transmitted
ii:lto the group of cells of the bank with number p (the coefficient of the product
‘ i‘di is transmitted to the cell with nuuber a + K + Sp + 5 + 1), If ?n.+:rlis
géinot equal to the contents of either of the occupled cells & + 1, a + 2,...,

f;%then T + o, is transmitted to the first empty cell a + 1 + r and the product
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is sent to the group of the béﬁk with nuMber r. ©Since the program is constructed
such that the product coefficlents sent to the cells of the product bank are

- summed with the contents existing therein, the process described here provides

- for the adduction of like terms.

The logical diagram of the block has the form

ne Cow_as ‘ v
— 0,20, (Fy (1)3, (L<L o,lr, iz e [As(Ln)og (PP, (pFq)| Py (a++pFD| Fy(p) l;f Fis (q).Tﬁ ol i

The operstors 0., 0., and O, renew the initial wvalues of thé parameters q

1’ "2 3

(q=0), ¢« (¢ =-1), and n (n = -1); q is interpreted as the number of occupied
groups of the product bank.
A8 forms the sum v + 7 =171,
¢ n
T., transmits  + 7_ to the cell a + 1 + p.
14 ¢ “n

1
| product to cells of the group wlth number p.

¢>5 generates for the multiplication block the command to transfer the

12, BIOCK FOR ANALYSIS OF THE TYPE OF GROUP MULTIPLICATION
After operation of the block for determining the addresses of the products,

control is acquired by the block for analysis of the type of group multiplica-
tion. Part of the function of the block is to form a series of cormmands for the
multiplication block, depending on the type of series multiplication. These
commands cannot be generated once and for all for all combinations of groups

of a multiplied pair of complexes, since the type of multiplication can change

as the numbers of the groups varies, even if only one of the multiplied.complexes
 ;‘is a complex of inequalities in the coordinate z. In fact, the form of equa-

| Lions {108) aud
‘that in the first half of all the groups, the series are in ascending powers

» ‘of {, while in the second half of the groups the series are in descending
wo

e W7
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powers of {. Consequently, if the type of multiplication determined from the
scale is the first type, corresponding to multiplication of two series in ascend-
~ ing powers of { (for exsmple, z/L"J:Tf- u)F—l), then all the pairs of groups for
which n < N/2 must be multiplied in correspondence with the first type of multi-
" plication, and all pairs of groups for which n.a,N/E must be multiplied in
‘correspondence with the third type of multiplication (multiplication of =

series in descending powers by a series in ascending powers of ).

A more complete analysis in this type of multiplication must be carried out
with allowance for the fact that the second factor can be a complex of inequal-
ities in the coordinate z. Thus, the type of multiplication of individusl pairs
of groups depends, first of all, on the type of multiplication of the complexes
as specified by the logical scale, secondly, on the affiliation of these groups
with complexes of inequalities of the coordinaste z, and thirdly, on the order lﬁiii

numbers of‘the groups. An analysis of the possible situations can be made

~ according to the following scheme:
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The operators P, and P2 determine the type of multiplication specified by

1
the logical scale and, in correspondence with it, transfer control to the vari-
~ ous groups of operators. It is readily seen that the factors in the terms of
expansion of (/s and 8()/oz can be arranged in an order such that type 3 multi-
plication is avoided. For this reason, the diagram does not transfer control

~ from Pl and P2 to the group of operators controlling type 3 multiplication.

The group of operators designated from type 1 multiplication enalyzes all
possible cases which can occur in this type of multiplication. The same applies
to the group of operators designated for type 2 multiplication. Types 3 and I3
are not in need of such an analysis, because these multiplication types do not
occur for complexes of inequalities in the coordinate z. It is found as a re-
sult of analysis that the given pair of groups should be multiplied in accord-
ance with some other type of multiplication, the operators E7, E9, ElS’ E20
~transfer control to the‘group of operators for the corresponding type, which
" generate commands for the multiplication block. These operators in the first
type of multiplication are ¢ﬁh andtbls, in the second type«bEl and.¢bg, in the
third type(bgu, and in the fourth type ¢b6' Since, as mentioned, the coeffic-

ients of 4-21

in types 3 and 4 multiplication are respectively equal to the
coefficients o*f'§2:'L in types 2 and 1 multiplication,<b2h and<b26 only execute
a part of the necessary operstions, all the rest being carried out by the

' operators @ op 8nd ¢l5 , to which control is transferred.

P. and P.._ test fulfillment of the following condition: The parameter K

3 17

i{ énters into the characteristic of the first factor in an odd power (in this case,

* the first complex is & complex of inequalities in the coordinate Z). P5 and PlO

!f test the second factor in the same menner.

S b




‘blh calculates the number of the initial cells of the groups to be multi-

plied, on the basis of equation (15):
 N=N,+% u N=N,+9, |
~ the quantities appearing in the first and second addresses of the cell ﬁ being
used for NO and NO’ (cf. Tll in the block for determining the initial cells).
‘L'Inasmuch as n and ¢ are counted from zero, n - 1 and ¢ - 1 are replaced in equs-
" tion (15) by n and ¢. Moreover,<blu transmits to the reference cells the address
substitution constants, in such & predebermined menner that the product coef-
- ficients di will be transmitted with increasing index i into group cells of the
product bank in order of increasing cell number.
<P15, consistent with the property 6 of the product series coefficients,
forms the quantity NO/ 4+ 9¢ - b4 + € in the second address of the cell R; that
- quantity is equal to the address of the second factor in the expression bi-kck Zzﬁﬁi

with the initial values of the indices i and k (the address of the first factor

~is equal %o N, + 9n). Besides this,d. _ trancsmits the address substitution

15
constants in correspondence with properties 1 and 2.

The corresponding operators for the other types of multiplication execute
an analogous function. <b2h and¢b26 transmit the address substitution constants
in such fashion that the coefficients di are transmitted with increasing i into
group cells of the product block in order of diminishing cell number, beginning

 with the highest numbered cell. In this way, the third and fourth types of
-} multiplication are reduced, on the basis of the remarks mede on page 31, to the
Ssecond and first types of multiplication, respectively. The operators<b8,<ble,
ﬂj and(bl9 generate the command to change sign of the product b, e, or b, .c_,,

;- since in these cases one of the factors is taken from memory with the opposite

I;%Sigp (see section 6).
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13. MULTIPLICATION BLOCK; MULTIPLICATION CHECK BLOCK

The logical diagram of the multiplication block can be written as follows

):

(operators A - E9

Vv JE W i g

4]

BRI Ay (L7 1070 0,

A s as \ .
The operator 1 executes multiplication of bi-kck (or bi-kc-k)

A2 either leaves the product unaltered or changes the sign (cf.<$8,<blz,
¢19 of the preceding block).

A3 sums the result of the preceding operstions with the contents of the

cell a+ K+ 9p+ 5 + 1 (possibly also a + K + 9p + 6- 1).
Fh performs an address substitution in k in correspondence with property 1
" of the product series coefficients.
| P5 checks the transfer to computetion of the next coefficient in fulfillment
of the following condition: The number of components in the coefficient is
greater than E, where the initial value of X is computed in accordence with
- property 5.
<p6 forms the new value of K in correspondence with property 3.
F7 performs an address substitution in i of the operators Al and AS.
P8 checks fulfillment of the condition 1 = 5.
E9 transfers control to the operator F6 of the block for determining the
*E‘product addresses.
¥3 APter &1l n and ¢ have been exhansted in the block for determining the

fj product addresses, meaning that multiplication of the pair of complexes has been

- completed, control is transferred to the multiplication check block (Plo and

-
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le of the preceding diagfam). The multiplication check block is not a fixed

element of the program. As already stated, the operator PlO sums all coefficilents
of the product of a pair of complexes and compares them with the product of the
control sums of the factors (the control sum is the sum of all coefficilents of

8 complex of inequalities; the control sum is stored in memory along with the

! coefficients of the complex). In the event that these quantities do not coin-

S8

cide, the operator 7Z.., executes a stop.

11

Pl checks the need for returning to the block for determination of the
initial cells 1f the nunmber of factors is insufficient. In this case, the

operator Tl transfers the product series from the product bank to a special

3
location in memory; it transmits to the first address of the cell R (cf. Tllof
the block for determination of initial cells) as NO the number of the initial
cell of the bank to which the product series is transmitted; it transmits to

the reference cells the parity index and number of arguments of the product;

-~ it shifts the contents of the cell G of the multiplication type scale two places

| f
‘to the left. Since the product is always in ascending powers of {, the quantity.’

is set equal to zero (this is necessary in order for the operators P_ and P

3 17,

3
of the multiplication type analysis block to function properly).

If all the necessary complexes have been multiplied, control is transferred.[!ﬁil

~ to the next block (below).

14, BLOCK FOR MULTIPLICATION BY K §'g f*

+ stipulated by the form of the term in the expansion of 8}/ és or 80Q/sz, includ-

;: ing multiplication by the coefficient K, multiplication by'gﬁﬂ and multiplication

i;lby'one of the series a¥, b¥, ég, .. Let, for example, the products with

iiicharacteristic A\ generated by the term

2’ 2 B o
%("@)Zﬁ“"dgi of the expansion of 80)/os

&

.
R

Lo | 2




be computed. Then, having execubed multiplication of the complexes &E.ff’
a al

for the next partition of the characteristic Al = v, the product must be multi-
15

72 ¢ '3'§,. where é?‘ denotes either 1, or (5 - ¢ ™™, or

lplied by
}m”mv ngchﬁ , depending on what power of e’ the initial characteristic

. Ma for the second row is divided by in a given cycle of computations.

For a graphic illustration of how the block functions, we examine the

ordering of the coefficients of the expansions in machine memory. The coeffic-

ients of the expansions of 8Q/8s and 8()/8z are written row by row in successive

LN

cells of the memory. The coefficients of the expansions &_, b, &.,... can be
bl 0s Pps B37
arranged in tabular form:
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Tn this table, 52, 52; 53,... are numbered in the order in which they are ZZﬁﬁL
encountered in the terms of the expansion ofé%)/és. For all coefficients, the
f relative numbers (i.e., the numbers counted from some arbitrary origin) of the
cells in which they are stored are Ilndicated. At the top of each column is the
" power of C, which is multiplied by each coefficient of that column. The hori-
- zontal braces join the columns in which one row contains coefficients of the
“‘ferms of the expansions of & b2, a sees having the indicated power of e’ as a

2’ 3

factor.
An analogous teble can be drawn up for the expansion ofé%)/az.

*
Each of the quantities a _ will be completely defined if we can indicate

f
the number of the cell in which the coefficient of its first term is stored, the
value of the exponent of { in this term, and the number of all terms. All of
these quantities can be easily computed if the number £ of the term of the ex-
pansion of 8§)/8s or 8)/8z on which the computation is based at the given instant

' is known, along with the power exponent h of e’ by which the initial character-
istic for the working row is divided in & given cycle of computations. Then, as
readily visuvalized in the table, the first coefficient é* will have the relative

f

number

v?\\

2 <,
T

'+ the exponent of { in this term is equal to wh and the number of terms is equal

“to h+ 1. In going from lhe first tcrm tc the second; the address of the coef-

ficient is increased 12 units, the power exponent of { is deminished by 2m, etec.
To write the right-hand members of the fundemental equetions (7) and {8), &

l tbank of cells is allocated, as can be schematically represented in the following

i form:

S
o



} lbf.x-; a2 TR

I s B

Oth group. lst group (K-1)th group i

The arguments of the groups of the sought-after complex of inequalities,

V‘Tl’ Toseees 8TE transmitted to the cells  + 1, b + 2 prior to the start of

computation of the right-hand member.
At the instant control is transferred to the block for multiplication by

*
KCBa £ the result of multiplication of the complexes of inequalities 1s located

- in cells of the product bank. Subseaently, all occupied groups of the product

*
bank must be first multiplied by the first term of s then by the second,

f’

third, and so on, until all terms are exhausted. The product of each group by

*
a definite term of a . must be multiplied by‘Kgﬁ and sent to the same groups of

- the bank of cells for the right-hand member whose argument coincides with the

product argument (in actuality, the modulus of the difference in arguments is
evaluated, which must be less than or equal to some meaximum admissible compu-
tational error). Of course, the newly transmitted terms must be summed with the
already existing contents of the cells in the bank for the right-hand menber
(the bank is cleared before starting computation of the right-hand menber) .

This process of adduction of like terms follows the same plan as in the address

determination block. Let it be required, for example, to multiply by

: iv ‘ ;IS : m —m
- — 5 (S —L™). First of all, the first of the product series arguments found

L

P

in the cell a + 1 of the product bauk is summed with the argument m of the first

%
term of a

3° The sum is then compared with the contents of the cells for the

- larguments in the right-hand member bank, b + 1, b + 2,... We assume that a /669
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‘:matCh has occurred in the pth step (p counted from zero). Then after multipli-
cation by - %2 . SC_S, the first group of the product bank is transmitted to
cells of the group with number p of the right-hand member bank. This transfer,
j however, is not allowed to go such that the contents of the cell with relative
. number 1 of the first group will fall into & cell with the same relative number
of the second group; since the series ié multiplied by‘§-3, this transfer must
be accompanied by & certain shift. Then this cycle of computaetions is repeated
with groups whose arguments are located in the cells & + 2, & + 3,... After
‘exhausting all groups, & transfer is executed to the term _g‘m of the expansion
5; for repetition with it of the next broader cycle.

We will now deduce a formula for the magnitude of the shift.

It is readily seen that multiplication of a series in powers of { by’§2

2

must be accompanied by a transfer of the coefficient Ai of L “* to the cell

nunbered one unit higher than the number of the cell in which Xi is stored, be-
cause now Ai becomes the coefficientcﬁ?§2(i+l). Similarly, in multiplying the
series byfl-z, the coefficients of the series are shifted one cell to the left.

| However, the magnitude of the shift depends not only on the power of {, by which
the series is multiplied, but also on the mutual relationship of the parity in-
dices of the product series and the computed right-hand member or, equivalently,
the parity index of the complex of inequalities whose coefficient are being

i determined. The following four cases are possible:

1) Parity index of the product equal to O, parity index of the right-hand

lyjmember equal to O.

fﬁiiseries by {7, the shift is equal to B/E.

]
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2) Parity index of the product equel to 1, parity index of the right-hand

member equal to O.

Multiplication of the product series by {ﬁ;can be represented as multipli-

cation by‘§3-13 { . But multiplication of the product series by { reduces to

" transformetion of this series from a series in odd powers of { to a series in
;j‘even powers, which is what it should be by the fact that the parity index of

'i +the right-hand member is zero. The magnitude of the shift is equal to %(B - 1).
3) Parity index of the product equal to O, parity index of the right-hand

: member equal to 1.

Multiplicetion of the product series by’CBcan be represented a&s multiplica-
tion by ?B+l-§-l. Multiplication byl'd'reduces to transformation of the pro-
duct to a series in odd powers of { . The shift of the product series is equal
Cto LB+ 1).

4) Parity index of the product equal to 1, parity index of the right-hand
f member equal to L.
Both series are in odd powers of { . In multiplication by gﬁi the shift is

equal to B/2.

All possible cases are covered by the following formula:

+ =/3+ parity index of right-hand member - parity index of product
2

Shif

The expansions (12) and (13) show that for those rows for which 8 is even,
; the difference in parity indices is equal to O, for those rows for which 8 is

;: 0dd, the difference is equal to *l. Consequently, the magnitude of the shift is

It is readily calculated that the largest possible shift for the expansions

??'(12) and (13) is equal to 2. Wken the shift is mede, one or two of the
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coefficients will run over the nine cells allotted for the coefficients of one
group of terms. So that these coefficients will not get into the cells of
'neighboring groups, each group of the right-hand member bank is set off from

* the other by two cells. The terms which run out of the group are disregarded Zﬁiﬁl
from then on. This is fully justified by the comsiderations of section 6. Over
and beyond the arguments therein, we point out that all the terms of the right-

' hand member that are generated by 8(/ds or 8Q)/oz are multiplied by the small
factor m?. Moreover, the maximum shift of two cells occurs in determining the
coefficients of inequalities whose characteristics include the very small
quantity « 2 .

*
The logicel diagram of the block for multiplication by K maf has the form

iz XBXNE

P8Pl DR Eg

A, Oz(t)iAsg’f,t)Oq(l)Los(p)As(t.LﬁP.,fr;(p)&;’;: B i e (lag

— C—

The operator A, computes the magnitude of the shift.

1
0,5 0y, O5 renews the initiel values of the parameters t (t = 0),
¢t (¢ =0), and p (p = 0).

A3 computes the product of the coefficient of the expansion of of)/os with

*
number f by the coefficient of the expansion of af located in the cell with

k=h
relative number equal to .f4F12<t4F;2 k>fiiTﬁ ;5 it computes the value of the
= -

*
. argument of the corresponding term in the expansion of af, equal to m(h - 2t)ESt.

A6 forms the sum of the ergument S, and the argument of the group in the

t
_’product bank witlh nuiber i .

P7 tests fulfillment of the following condition: The sum of the arguments
‘' 'as formed by the operator Ay is not equsl an argument from the cell with number

‘b 4+ 1+ p of the right-hand member cell bank.
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- 1s fulfilled, the operator Z

P, tests the following condition: p > P, where P is the number of all

9

groups of the complex of inequalities being determined. In case the condition
10 executes a stop, since fulfillment of the condi-
tion means a halt in computer operation.

All performs multiplication of terms of the group in the product bank with

- number ¢ by the coefficient 'I‘t and transmits them to the group of the right-hand

- member bank with number p, simultaneously executing & shift by the required

nunber of cells.

P13 tests the condition ¢ = g, where q is the number of occupied groups in
the product bank.

E16 can transfer control to one of the executive blocks, depending on how

this operator is formed by the executive block.

15. EXECUTIVE BLOCK FOR COMPUTATION OF TERMS IN THE RIGHT-HAND
MEMBER OF EQUATTONS (7) OR (8), GENERATED BY 6()/ds OR 8(}/oz

The function of the executive block can be succinetly described as control

’.of the program cycles. TInasmuch as the number of cycles is rather large, it is

convenient for simplication of the logical diagram for the progrem to agsemble
the control operators for part of the cycles in one memory location and to re-
gard the seF of them as a program block. This block contains the operators for
control of those cycles within which transitions are made from one term of the
expansion of 8()/ds or éQ/az to another. There are five such cycles.

Cycle 1. Computation of terms with a definite characteristic, generated

" on the basis of one partition of the characteristic of & group of row terms

.having the same type of partition. The working part of the cycle embraces

~ blocks II-VII. The cycle comtrol operators (0ll - ElS’ Fl6 - Eyos see the

“3gdiagram) execute multiple repetition of the operation of blocks II-VIII for the

. isuccessive terms of the group.

59




Cycle 2. Computation of terms with a definite characteristic, generated ﬁéﬁg;
on the basis of all admissible partitions of the characteristic of & group of
row terms having the same type of partition. The program of cycle 2 embraces
the program of cycle 1, including in addition to it the partition block. The
contbrol operators for this cycle (T21 - E23) execute multiple repetition of
cycle 1 every time on the basis of a new partition of the characteristic. The
end-control operator for this cycle is left in the partition block (see P16 of
the partition block).

Cycle 3. Computation of terms with a definite characteristic, generated
by all groups of terms of one row with a definite value of the parameter h.
The control operators for the cycle (P2h - E26) execute repetition of the preced-
ing cycle, performing address substitution on it each time to & new group of
.terms in the row.

Cycle 4. Computation of terms with characteristic A, generated by the row
with number n for all possible values of the parameter h for that A. The con-
trol operators for the cycle are A27 - E3O°

Cyele 5. Cycle in the parameter n. The control operators for the cycle
are A31 - E36'
It was stated in section 14 that it is necessary for operation of the block
for multiplication byiK{@{: to know f, the number of the working term at a given
instant. The value of f can be represented as the sum of three parameters
Ff-1=1+ il + i2, where i1 is the number of terms of the expansions in the
rows preceding the working row at that time, i, is the number of terms of the
expansion in the given row before the working group, i2 is the number of terms

:“‘ in the group before the working term. The representation of £ - 1 in this form

v7 %proves convenient, in that the quantities vary in quite simple fashion for all
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possible address substitutions and renewsls in the five indicated cycles.

Three groups of cells are picked out for address substitution of the logi-
- cal scales: g, &) &3 él’ ég, é3; g, & g3. To the cell g is transmitted
| the scale of partition types and to the cells ge, g3 the scale of type of multi-
. plication for the row with number n. With respect to address substitutions of
; the scales, the groups of cells gj, éj’ and gj play a role analogous to that
play in address substitutions of the quantity f. The diagram

- which 1, il, i2

of the executive block has the form

A
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The opersator Ol receives control from the executive routine in transition

to determination of the coefficient of the next complex of inequalities; it re-
news the initial values of the parameters n=1, h=0, 1 = 0.

1
‘L2 (for brevity, each pair will be designated by a single symbol); it transmits

T2 transmits the characteristic A to two pairs of reference cells L. and

_ to the operstor VII-16, I-16 commends to return to the present block.

P3 tests the following condition: AJa does not contain negative powcrs of
¢m‘generates comparison constants depending on n:'ﬁ (see the partition
:é;block, P9) and 3 (see the multiplication check block, PlQ); it selects from

;}Ememory the logical scales of the row with number n and transmits them to 85 85

g3m A




) ’ k=h
A8 forms the sum r + 12k; O5 - E9 compute the sum 'L::Az«jz k, used in/672

Cuntlo kel

*
the block for multiplication by'KCﬁéf.

OlO’ Oll renew the initial values of the parameters i, 1, (1l = 0, l2 = 0).

T12 transmits gj into gj.

Al3 forms the sum i + 11 + 12.
T,) trensmits the characteristic (Ll) into the cell Dy (see the partition

block).

Fl6 performs address substitution of i, by unity.

2
AlT stores él in memory in the cell éi; it shifts the contents of the cell
él 4 places, those of ég 8 places to the left; it augments the free spaces of
ég with a group of places of é3; it shifts é3 8 places to the right.
Pl8 tests the following condition: él = éi* (fixed type of partition in

transition to the next term).

E returns to the subprogram - to the operator A _.
119 13
T21 transmits gj into gj, iy into is. In this way, the position of the

scales and value of the parameter i,. are fixed for the first term of the next

2
group in the row.
B returns to the subprogram - to the operators O - A _.
loo 11 13
P2LL forms the logical sum of the contents of the cells Eé and §3. In the
~event that this sum is equal to zero (which can happen when all groups of the

row have been exhausted), it transfers control to the control operators for the

tl cycle in h.

T25 trausuits g& into 8 exd replaces i, by i, + 1, (see Tgl)'
A27 forms the characteristic (Ll)/e’ and transmits it into the cell Ll'

P28 tests the following condition: (Ll)/e' does not contain negative

"/ powers of e .
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s

valuesu=1 (in the expansions of 90/és andagybz, tie termo 4,

F29 performs address substitution in h.

forms the characteristic (L2)ﬁx and transmits it into the cell Ll'

P__ tests the following condition: (L2)ﬁx does not contain negative powers

32

A3l

T ofa.

F33 performs address substitution in n.

A34 replaces 1 by 1 + 1y + 1.

O35 performs renewal (reset) in h.
A37 multiplies the contents of the cells of the right-hand mermber bank by

16. EXECUTIVE BLOCK FOR COMPUTATION OF TERMS IN THE RIGHT-HAND MEMBER OF
EQUATTONS (7) OR (8), GENFRATED BY SERTES EXPANSION OF uC‘l/r3 OR z A 1/

Ag already mentioned, the program for computation of the right-hand members
of the fundamental equations is written such that all that is required for

transition from the first computational stage to the second is replacement of

. the executive block. Let us examine the essential differences in the expansions

contained in the brackets in the right-hand members of equations (7) or (8) and
the expansions of d{/ds and 4Q)/9z.

In the terms of the expansions generated by ug-l/r3 or z J:T7r3, there is
no multiplication by gB z. However, no modification i1s required in the block

*
for multiplication by Kcﬁgf,

for if we let B8 = 0, h = 0, the block functions
Just as well in this case also. The cycle in h vanishes from the executive
block.

In the terms of these expansions, the characteristic @ cannot take on

g-l

included in the expressions Zﬂqkﬁf&zﬂbsﬁ;» ; this is not done here).
- " st DTl T

L iConsequently, other restrictions must be placed on the set of values that the
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parameter jl, the order nunmber of the first factor in the bank of characteris- Z67§

tics associated with partition of the characteristic into two parts, can assune.

If previously the parameter jl varied within limits

-

1{.ji :\/5../7 \

-

where J 1s the number of characteristics whose orfer is no higher than the order
of the characteristic being partitioned, then the parsmeter jl must now vary

within the limits

where Jl is the number of characteristics whose order is less than the order of
the characteristic to be partitioned.

The quantity J (or Jl) is determined in the partition block from a table
as & function of the order of the cheracteristic. It is sufficient, therefore,
in the first case to subtract O from the order of the characteristic, 1 in the
second case, so as to account for this change in the upper limit. The lower
limit of variation of jl is analogously corrected.

In the expansions generated by uC-l/r3 or z d:T7r3, each term is multiplied
by one of the quantities P, Q, R,... or their conjugates. We note first of all
that multiplication of the product of complexes of inequalities by the series

P, Q, R,... can be executed by the same progrem as before. All that is neces-

sary to do this is to introduce beforehand into machine memory the coefficients

o . 1 R o S .y
Py Qi R, ... im0, =4, 2 0, i,

‘and the "characteristics" of these "inequalities.” It is necessary in the

characteristics to set il = i2 = 13 = '1z+ = 0. The number of the initial cell of

‘the inequality must be written in the second address of the second cell of such

)
1

ot

a characteristic, as in the general case. In the scales of multiplication types

6l



for each row, the type of multiplication by these inequalities must be indicated.

As a result of the operation of the partition block, the numbers n of the

- characteristics are formed in the cells <j>, <j1?, <j2>,..., <3 >. An =ddi-

n-T
tional problem that arises in this case is to obtain in the cell <jn? the number

of the characteristic of whichever of the series P, Q, R,... multiplies the
expansion of the product of the remaining series in the given term. As indicated,
each partition of the characteristic is used for several terms of one row, where-
as the multipliers P, Q, R,... are different in general for these terms. Conse~
quently, the address substitution of <jn> must be performed for each address

substitution in the parameter i.. For this purpose, the numbers of the charac-

2
teristics of P, Q, R,... 8re written in successive memory cells in the order in
which the quantities P, Q, R,... are encountered in the expansion generated by

ug—l/r3 or z Q-I/r3. Knowing f (the number of the current working term) end n

(row number), it is easy to extract the number of the characteristic from these

"cells and to send it into the cell.<jn;. We assume that jn is transmitted after

the partition block has generated one of the admissible partitions for the
initisl characteristic (in this case, i = X, see the partition block). If the
acquisition of each partition were followed by reversion to the executive block,
then jn could always be treansmitted in this case as indiceated. However, such
reversions are not dictated by necessity, at least insofar as the program for
selecting terms from the expansion of 3€)/ds or 9Q0/dz is concerned; in this

program, after each partition has been vbtained, revcrsicn cccurs to the block

for determination of the initial cells. If we wish to keep the old program

' . -1,.3 — 3
- for selecting terms from the expansions generated by ud “/r” or z N-1/r7, it
- becomes necessary in certain instances (cases involving address substitution in

‘ i;cycles 3 and 5) to specify jn before obtaining the first partition of the
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characteristic. It is impossible here to transmit the number of the character-
istic of P, Q, Ryes. directly into the cell <jn?; during operation of the parti-
© tion block, the contents of this cell change. However, if we send the number
’“of the characteristic into the cell<<j2>, it is automatically transmitted to the
’ cell.<jn?in the operation of the partition block.

These remarks indicate what changes must be introduced into the logical ,léz&
‘diagram of the preceding block in order to obtain the block described in the

present section.

?

X 32 B o I1 | ’
[ l | . M TTT ™
0, (R0 T, YA P, | 05 (n) 0 (1) 0, (1)) 0 (1,0 Ay mmaz 1 Bl l

Vil 16 971 14, 18

S

lrﬁ () Ag P (GmG,) l £, (10-1) Eg ,l; Fszgs Bt E Vo, (V5 ) Ty 25 ;T Fos(M)Bgp.E s

We will list the descriptions only of those operators whose function differs
" from the function of ‘the corresponding operators of the preceding block.
T, transmits to the operators VIII-16, I-16 commands for return to the
 present block; it transmits to the reference cells comstants for correction of
the limits of variation of the parameter jl (the operator 'I'2 performs a similar
function in the preceding block).

A3 determines the order of the characteristicA.

PN tests the following condition: The order of the characteristic is

greater than or equal to n + 1, where n is the number of the row of the expan-

sicne If thic condition is not fnlfilled, control is transferred to the master

ﬂf.executive routine, which executes & transition to the third stage of operation.
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Tll transmits into the cell'<j2>>the characteristic of whichever of the

quantities P, Q, R,... corresponds to the term of the expansion with number

"f =1+ 11 + 12 + 13.

T12 transmits the characteristic A into the cell D. of the partition block.

1

Tl transmits into the cell<<j2>>the characteristic of whichever of the

3

 quantities P, Q, Ry... corresponds to the term of the expansion with number

f=1+41i +1i,+ i,

1 2 3
- A — .
E118 reverts to the subprogram - to the operators 10 Tll
B reverts to the subprogram - to the operators 08 -T .
1oy 1L
A27 replaces 1 by 1 + i + 12.

We conclude the present article by considering one further problem, which
still has to be cleared up. How can the present progream be used to compute the
terms generated by the first row of the expansion of d{)/ds or 4Q/9z? This is

accomplished by introducing the fictitious inequality

Since multiplication by this inequality is equivalent to multiplication by
1, it cen be used to represent the terms of the first row in a form analogous to
that of the terms in the other rows. In order to execute multiplication by this
inequality according to the general rule, its coefficients and cheracteristic
‘are injected into machine memory with il = 12 = :'L3 = :‘Ll+ = 0. The nunber of the
mt initial cell of the inequelity is written in the second address of the second
igtic., Tor the terms of the first row of d{)/ds or 9Q)/dz,

|

Lo o2 a
. the characteristicsk/e'h can only be subjected to one partition 7;==1-—%.
e . e’

A

3r§where T is the characteristic of the fictitious inequality. If the characteristic
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T is inserted in the block of characteristics ahead of the characteristic 1, its
order number will be equal to O and the limits of variation of jl in the case of
- the first row of 8Q}/as or d(}/sz must be chosen such that jl will assume the
unique value .
This operation is carried out by a special operator not indicated in the Jézﬁi
 diagrem of the partition block (coming aftercb3). The order number j of the

- characteristic of the second factox‘A/e'h can be determined in the usual manner.
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